ployed. Using half a molar equiv resulted in both lower diastereomeric ratio and lower yield (entry 1 **vs** 2). These results differ from those using Zn(I1) in equilibration reactions where **0.5** molar equiv of Zn(I1) gave better diastereoselectivity.^{9b} In one comparative experiment, the use of ZnBr₂ in the aldol reaction between propiophenone and benzaldehyde gave a lower anti:syn ratio (92:8) and lower yield (53%) than the reaction with $MgBr_2OEt_2$ (98:2, 73 **90).&*M**

The equilibration of lithium aldolate is often accompanied by lower yields of aldol products as a result of retro-aldol reaction. a_{a} , b_{b} This complication is effectively eliminated with the use of Mg(1I). We postulate that the strongly chelating magnesium ion permits isomerization around the C_2-C_3 bond without requiring the complete dissociation of the adduct from the metal. However, this still leaves a pivotal question unanswered, i.e., why are the observed anti selectivities as high as they are? *As* House pointed out almost twenty years ago,^{9b} anti adducts are thermodynamically more stable than their **syn** counterparts, *but only to the extent of having one less skew butane interaction.* We suggest that bis-adducts, such **as 5,** may provide a mechanism for amplifying what might otherwise be small energy differences between monomeric aldolate diastereomers. For example, a hypothetical equilibrium mixture of 5:1 anti-anti:anti-syn bis-aldolates would result in an **11:l** anti-syn product ratio. Support for the intermediacy of dimeric aldolate comes from the work of Jeffery et al., who have ieolated and characterized aluminum aldolate dimers of general structure 6.¹³

Experimental and theoretical studies aimed at estab**lishing** the intermediacy of bis-magnesium adducta in these reactions is underway. In addition, we are **also** exploring the potential of this procedure with regard to simple aldol selectivity and double asymmetric induction.

Acknowledgment. Financial support for this study was provided by a grant **from** the National Institutes of Health, the donors of the Petroleum Research Fund, administrated by the American Chemical Society, and a grant from the R. W. Johnson Pharmaceutical Research Institute.

Stereoselective Synthesis of Trisubstituted α , β -Unsaturated Esters and Amides via Reactions **of Tantalum-Alkyne Complexes Derived from Acetylenic Esters and Amides with Carbonyl Compounds**

Kazuhiko Takai,* Makoto Tezuka, and Kiitiro Utimoto*

Department of Industrial Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Kyoto 606-01, Japan Received July 1, 1991

Summary: Treatment of acetylenic esters with low-valent $tantalum$ (TaCl₅ and Zn) in DME and benzene produces tantalum-alkyne complexes (not isolated), which react with carbonyl compounds regioselectively at the α -position of the esters to give Z isomers of trisubstituted α , β -unsaturated esters in a stereoselective manner. In contrast, tantalum-alkyne complexes derived from acetylenic amides react with carbonyl compounds at the β -position of the amides predominantly.

Tri- or tetrasubstituted α , β -unsaturated carbonyl compounds, in particular, esters and amides, are an important class of compounds as synthetic intermediates of many natural products. Stereoselective construction of such compounds is a fundamental challenge in organic **syn**thesis.^{1,2} Olefination of carbonyl compounds using Horner-Emmons reagents or the carbanions stabilized by silicon and ester groups usually produces a mixture of E and *Z* isomers of α , β -unsaturated esters.³ Carbometalation of a propiolate ester with lithium didkylcuprates followed

by addition of carbonyl compounds affords (Z) -2-alkylidene-&hydroxy esters stereoselectively in the case of ketones, while its condensation reaction with aldehydes **af**fords mixture of E and *2* isomers.'

Recently we found a convenient procedure for the preparation of tantalum-alkyne complexes 56 and employed the complexes as a cis-fixed vicinal alkene dianion reagent.⁷ We disclose here novel access to trisubstituted α,β -unsaturated esters and amides by the reaction of tantalumalkyne complexes, derived from acetylenic esters or amides, with carbonyl compounds.

⁽¹³⁾ See: Jeffery, E. A.; Meietere, A,; Mole, T. *J. Organomet. Chem.* **1974, 74,373 and references contained therein.**

^{(1) (}a) Arora, A. S.; Ugi, I. K. Methoden der Organic Chemie; Houben-Weyl, Bd. V/1b.

(2) For intramolecular reactions between acetylenic esters and car-

bonyl compounds, see: Smith, A. B., III. Strategies and Tactics in

bonyl compounds, see: Smith, A. B., III. Strategies and Tactics in Organic Synthesis; Academic Press Inc.: Orlando, 1984; Chapter 9, p 252.

^{(3) (}a) Hoffmann, H. M. R.; Rabe, **J.** *J. Org. Chem.* **19(M,M), 3849. (b) Crimmin, M. J.; OHanlon, P.** J.; **Rogers, N. H.** *J. Chem. SOC., Perkin Tram. I* **1986,541.**

⁽⁴⁾ For copper-catalyzed conjugate addition of Grignard reagents to acetylenic esters, see: Marino, J. P.; Linderman, R. J. J. Org. Chem. 1983, 48, 4621 and references cited therein. See also: Normant, J. F.; Alexakis, **A.** *Synthesis* **1981,841.**

⁽⁵⁾ Kataoka, Y.; Takai, K.; *Oahima,* **K.; Utimoto, K.** *Tetrakdron Lett.* **1990,** *31,* **365.**

⁽⁶⁾ For representative reactions of metallacyclopropenes with unsaturated compounds, see: (a) Buchwald, S. L.; Lum, R. T.; Dewan, J. C.
J. Am. Chem. Soc. 1986, 108, 7441. (b) Buchwald, S. L.; Watson, B. T.; Huffman, J. C. Nielsen, R. B. Chem. Rev. 1988, 88, 1047. (e) Van Wagenen, B. C.;
Livinghouse, T. Tetrahedron Lett. 1989, 30, 3495. (f) Hartung, J. B., Jr.;
Pedersen, S. F. J. Am. Chem. Soc. 1989, 111, 5468. (g) Kataoka, Y.;
Miyai, J.; Te **Wigley, D. E.** *Organometallics* **1990, 9,** 266.

^{(7) (}a) Takai, K.; Kataoka, Y.; Utimoto, K. J. Org. Chem. 1990, 55, 1707. (b) Takai, K.; Miyai, J.; Kataoka, Y.; Utimoto, K. Organometallics **1990, 9, 3030.**

Communications J. Org. Chem., Vol. 56, No. 21, 1991									
		Table I. Reactions of Acetylenic Esters or Amides with Carbonyl Compounds ⁶							
		TaCl _s , Zn ο	THF	$R^2R^3C=O$ T^2 *C, th	NaOH / H ₂ O 25°C, 1 h	۰ Ūz A HO	`R ³ R^3	$\frac{0}{C}$ 'ОН B	
		DME, PhH T^1 $^{\circ}$ C, 2 h	(pyridine)						
run	R ¹	${\bf z}$	R ²	R^3	$T^{1}/{}^{\circ}C$	T^2 /°C	t/h	yield/% ^b	A/B^c
1	$n - C_{10}H_{21}$	OEt	Pr	н	50	25	0.5	76	95/5 $(2a)$ $(2b)$
			$c - C_6H_{11}$	н	50	25	0.5	63	96/4
23456			$CH2 = CH$	H	50	0	0.3	65 ^d	78/22
			$-(CH_2)_5$ -		50	25	0.5	72	97/3
			$CH2=CH$	Me	50	25	1	61 ^d	72/28
	$c - C_6H_{11}$	OEt	Pr	н	50	25	0.5	76	98/2
7			c - C_6H_{11}	н	50	25	0.5	69	97/3
8			$CH2=CH$	H	50	0	0.3	64 ^d	83/17
9			$-(CH2)5$ -		50	25	0.5	72°	>99/1
10	$n\text{-}C_6H_{13}$	NMe ₂	Pr	н	25	50	2	79	10/90
									(3a) (3b)
11			c -C ₆ H ₁₁	н	25	50	2	57	2/>98
12			$CH2=CH$	H	25	50	$\bf{2}$	73	14/86
13			$-(CH2)5$ - Pr		25	50	3	33/	2/>98
14	$c - C_6H_{11}$	NMe ₂		н	25	50	2	73	24/76
15			c -C ₆ H ₁₁	н	25	50	3	31	<2/>98
16	Bu	$N(CH_2)_3CH_2$	Pr	$\mathbf H$	25	50	2.5	80	10/90

^a All reactions were performed on a 1.0-mmol scale. Acetylenic ester (runs 1-9): Two moles of TaCl₅, 3.0 mol of zinc, and 1.2 mol of a carbonyl compound were employed per mol of the alkyne, unless otherwise noted. THF and pyridine (4.0 mmol) were used **as** additives. Acetylenic amide (runs 10-16): 1.2 mol of TaCl₆, 1.8 mol of zinc, and 2.0 mol of a carbonyl compound were employed per mol of the alkyne. THF was used **as** an additive. *Isolated yields. CThe regioisomer ratios were determined by isolation or 'H NMR analysis. **Two** equivalents of acrolein (or methyl vinyl ketone) was employed. "Cyclohexanone (2.4 equiv) was used. *f* Cyclohexanone (3.0 equiv) was used.

Reaction of an acetylenic ketone with low-valent tantalum gave a complex mixture containing a pinacol-type coupling product.8 However, treatment of acetylenic esters with 2.0 equiv of TaCl, and **3.0** equiv of zinc produced the tantalum-alkyne complexes. *As* complexation of acetylenic esters with low-valent tantalum proceeded slower than that of dialkyl acetylenes, the mixture of low-valent tantalum and an acetylenic ester was heated at 50 °C to accomplish the complexation.⁹ Hydrolysis of the tantalum-alkyne complexes with aqueous sodium hydroxide solution (15%) afforded (Z)- α , β -unsaturated esters in 80-82% yields (eq 1).¹⁰ In contrast to acetylenic coupling product. However, treatment or accetylenic
esters with 2.0 equiv of TaCl₅ and 3.0 equiv of zinc pro-
duced the tantalum-alkyne complexes. As complexation
of acctylenic esters with low-valent tantalum proceeded

$$
R = CZ
$$

\n
$$
R = CZ
$$

\n
$$
CZ
$$

\n
$$
CZ
$$

\n
$$
CZ
$$

\n
$$
R = CZ
$$

\n
$$
CZ
$$

\n
$$
R = CZ
$$

\n<math display="block</math>

esters, complexation of acetylenic amides with low-valent tantalum proceeded smoothly at 25 °C and the corresponding (Z) - α , β -unsaturated amides were obtained in 84-88% yields after aqueous alkaline workup (eq 1).¹⁰

Tantalum-alkyne complexes derived from acetylenic esters reacted with carbonyl compounds smoothly at **25** OC and two regioisomeric adducts **A** and B were produced in 61-76% combined yields (Table I, runs **1-9).** One of the regioisomers **(A),** generated by insertion of a carbonyl group into the tantalum-a-carbon bond of **1,** was produced under high regio- and stereocontrol, especially in the case of saturated carbonyl compounds.¹¹ On the other hand, reactions between tantalum-acetylenic amide complexes and carbonyl compounds gave predominantly the opposite regioisomers B.12 *As* the reaction proceeded very slowly and required heating to complete, the amount of the lowvalent tantalum was reduced to avoid the consumption of carbonyl compounds (runs 10-16).

Regioselectivity of the reaction of metallacyclopropenes is an important problem especially from a synthetic point of view. Tantalum-alkyne complexes can be produced from not only dialkyl acetylenes^{7a} but also heterosubstituted ones,^{7b} and they react with carbonyl compounds to afford two regioisomeric allylic alcohols. Although the complexes derived from such alkynes and the $TaCl_5-Zn$ system are not well characterized, the regioselectivities are varied with the following factors. (i) Steric effects of the substituents on acetylenes: Reaction **takes** place at the less hindered side of the tantallacyclopropene.^{7a} (ii) Electronic effects of the substituents: When electrondonating groups, such **as** SMe and SPh,7b are attached to the acetylenes, β -adducts are produced predominantly. In contrast, a-adducts are obtained **as** a main product in the case of electron-withdrawing groups, such as $SO₂Me^{7b}$ and C0,Et. (iii) These two factors, however, could not account for the regiochemistry, β -selectivity, of the reaction between tantalum-acetylenic amide complexes and aldehydes. Complexation of acetylenic amides with the lowvalent tantalum proceeded exceptionally fast, while reactivity of the formed tantalum-alkyne complexes toward

⁽⁸⁾ Ketone and aldehyde groups were reduced smoothly with the lowvalent tantalum to produce pinacol-type 1,2-diols.

⁽⁹⁾ Diethyl acetylenedicarboxylate remained unchanged aftar heating with low-valent tantalum at *50* OC for 3 h.

⁽¹⁰⁾ Authentic samples of the opposite isomers, (E) - α , β -unsaturated esters were prepared with the Horner-Emmons reagents. (E) - α , β -Unesters were prepared with the Horner-Emmons reagents. (E) - α , β -Unsaturated amides were obtained from the corresponding esters. Lipton, M. F.; Basha, A.; Weinreb, S. M. Organic Syntheses; Wiley: New York, 1988; Colle

⁽¹¹⁾ Stereochemistries of trisubstituted $\alpha_i \beta$ -unsaturated esters were confirmed by comparison with the ¹H NMR data on the literature; see ref 4.
(12) Treatment of a TBDMS ether of (Z) - $\alpha_i \beta$ -unsaturated ester 2a' (

¹²¹ (12) Treatment of a TBDMS ether of (Z) - α , β -unsaturated ester $2a'$ (R¹ = n -C_eH₁₃) with Me₂AlNMe₂ afforded the corresponding α , β -unsaturated amide, which was identical with the TBDMS ether of of a TBDMS ether of α , β -unsaturated amide 3b with LiEt₃BH in THF gave the corresponding monoprotected allylic diol. This sample was identical to the reduction product derived from a TBDMS ether of 2b' $(R^1 = n - C_6H_{13}).$

aldehydes was low. The observed reactivities and the β -selectivity could be attributed to the coordination of the nitrogen of amide to tantalum.¹³

Quenching the reaction mixture of a tantalum-ethyl tridecenoate complex and butanal with iodine in THF at 0 °C for 15 min and 25 °C for 2 h afforded β -iodo- α , β unsaturated ester 4 in 54% yield¹⁴ along with untrapped allylic alcohols 2a and 2b in 9% combined yields (2a/2b) $= 89/11$, eq 2). None of the α -iodo unsaturated ester was obtained. The carbon (sp^2) -iodine bond of 4 is a clue to

(13) When an acetylenic amide was added to the mixture of low-valent tantalum, the color of the mixture changed from greenish dark blue to ultramarine. Similar color change was observed after **the addition of TMEDA to the low-valent tantalum.**

 (14) Reduction of β -iodo ester 4 with $Et_3NH^+HCO_2^-$ under palladium **catalysis (Pd(PPh&) produced 2a in 87% yield. The following method was modified Cacchi, S.; Ciattini, P. G.; Morera, E.;** Ortar, **G.** *Tetrahedron Lett.* **1986,27,5541.**

develop further transformations.¹⁵

Supplementary Material Available: Experimental proce- dures and spectral data for all new compounds **(13** pages). Ordering information is given on any current masthead page.

Enantiocontrolled Total Syntheses of (-)-Physovenine and (-)-Physostigmine

Seiichi Takano,* Minoru Moriya, and Kunio Ogasawara

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai **980,** *Japan*

Received July 10,1991

Summary: Enantiocontrolled **total** syntheses of the Calabar bean alkaloid $(-)$ -physovenine (1) and $(-)$ -physostigmine (2) have been achieved in a concise manner starting from the optically active tricyclic enone 3 employing a Fischer indolization reaction under nonacidic conditions as the key step.

There is currently considerable interest in compounds having central stimulatory activity such as the anti-cholinergic Calabar bean alkaloids' due to their therapeutic potential in Alzheimer's disease' and cholinergic disorders.^{2,3} We report here the first total syntheses of $(-)$ physovenine (1) and a formal total synthesis of $(-)$ physostigmine **(2),** both members of the alkaloids of current interest, based on a new strategy exploiting a structurally biased polycyclic ketone **4** as a stereochemical control element in the key Fischer indolization step.

Alkylation of the optically active $(-)$ -tricyclic enone⁴ 3, prepared from racemic dicyclopentadiene in a four-step

sequence of reactions including lipse-mediated resolution, $⁵$ </sup> afforded the monomethyl ketone **4** in 86% yield as a mixture of epimers. When this compound was refluxed with **p-methoxyphenylhydrazine** hydrochloride in aqueous pyridine⁶ (1:10), a facile diastereoselective reaction occurred to furnish the carbinol amine 7, mp $109-111$ °C, $[\alpha]^{28}$ _D -144.6° (c 1.95, CHCl₃), as a single product, in 82% yield. This compound is presumably generated via [3,3]-sigmatropic rearrangement of the diaza-1,5-diene intermediate 5 to afford the imine 6 via introduction of the aryl group from the convex face of the molecule. The imine 6 is then hydrolyzed under the reaction conditions to give the carbinolamine **7** instead of giving the pentacyclic indolenine.

On acetylation followed by methylation, **7** afforded the tertiary amide 9, $[\alpha]^{29}$ _D -147.1° (c 1.21, CHCl₃), in 86% overall yield via 8, mp 163-164 °C, $[\alpha]^{27}$ _D -100.3° (c 1.19, CHC13). Compound **9** was refluxed in o-dichlorobenzene to initiate a retro-Diels-Alder reaction to give the cyclopentenone 10, $[\alpha]^{31}$ _D -64.6° *(c 1.41; CHCl₃)*, in 66% yield. The enone 10, on sequential one-flask ozonolysis, borohydride reduction, and periodate cleavage, furnished the lactol14 in 62% yield via 11-13. **Refluxing** 14 in methanol containing a trace of hydrochloric acid **caused** concomitant deacetylation and cyclization to give the tricyclic amino accel^7 15, $[\alpha]^{32}$ _D – 96.2° (c 0.35, CHCl₃), in 71% yield. Treatment of 15 with boron tribromide^{3a} followed by carbamoylation of the resulting phenol 16 afforded $(-)$ physovenine' **(l),** mp 126-127.5 "C, [a]30D -9O.OO **(c** 0.09,

⁽¹⁵⁾ For some examples, see: (a) Cowell, A.; Stille, J. K. *J. Am. Chem.* Soc. 1980, 102, 4193. (b) Weir, J. R.; Patel, B. A.; Heck, R. F. J. Org.
Chem. 1980, 45, 4926. (c) Jin, H.; Uenishi, J.; Christ, W. J.; Kishi, Y. J. **Am.** *Chem. SOC.* **1986,108,5644.**

⁽¹⁾ A recent review Takano, S.; Ogasawara, K. *The Alkaloids;* **Brossi, A,, Ed.; Academic Press: New York, 198% Vol. 36, p 225.**

⁽²⁾ Cf. Brwi, A. *J. Med. Chem.* **1990,33,2311. (3) Enantiocontrolled eyntheeee: (a) Takano, S.;** Goto, **E.; Hirama, M.;** Ogasawara, K. Chem. Pharm. Bull. 1982, 30, 2641. (b) Takano, S.; Mo-
riya, M.; Iwabuchi, Y.; Ogasawara, K. Chem. Lett. 1990, 109. (c) Takano,
S.; Sato, T.; Inomata, K.; Ogasawara, K. Heterocycles 1990, 31, 411. (d)
Lee, T.

⁽⁵⁾ Takano, S.; Inomata, K.; Ogasawara, K. J. Chem. Soc., Chem.
Commun. 1989, 271. Takano, S.; Inomata, K.; Takahashi, M.; Ogasawara, K. Synlett 1991, 636. **(6) Welch, W. M.** *Syntheeia* **1977,645.**

⁽⁷⁾ Enantiomeric exan wan determined to be 297% by HPLC [CHIRACEL W., 'PrOH-hexane (k9)]. Spectral data (Et, 'H NMR, and MS) of 15 were identical with those of racemic material: Shishido, K.; Shitara, E.; Komatsu, H.; Hiroya, K.; Fukumoto, K.; Kametani, T. *J. Org. Chem.* **1986**, 51, 3007.